Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122061, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553245

RESUMO

The galactomannan-based gel from Cassia grandis seeds was used to incorporate Penicillium sp. UCP 1286 and commercial collagenases. Experiments were carried out according to a 23-full factorial design to identify the most significant parameters for the incorporation process. The pH of the incorporation solution (pHi), stirring time (t), and initial protein concentration in the crude extract (PCi) were selected as the three independent variables, and the efficiency of collagenase incorporation (E) and collagenolytic activity (CA) after 360 min as the responses. pHi and PCi showed positive statistically significant effects on E, while CA was positively influenced by pHi and t, but negatively by PCi. The fungi collagenase was released from the gel following a pseudo-Fickian behavior. Additionally, no <76 % of collagenase was efficiently incorporated into the gel retaining a high CA (32.5-69.8 U/mL). The obtained results for the commercial collagenase (E = 93.88 %, CA = 65.8 U/mL, and n = 0.10) demonstrated a pseudo-Fickian behavior similar to the fungi-collagenase. The results confirm the biotechnological potential of the gel as an efficient matrix for the incorporation of catalytic compounds; additionally, the incorporation of collagenases was achieved by retaining the proteases CA and releasing them in a controlled manner.


Assuntos
Cassia , Galactose/análogos & derivados , Mananas , Cassia/química , Colagenases/química , Fungos/metabolismo , Sementes/química
2.
Front Immunol ; 13: 891495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844611

RESUMO

New therapeutic strategies for visceral leishmaniasis (VL) have been studied, and the development of an immunotherapeutic agent that modulates the host's immune response is necessary. The aim of this study was to evaluate in vitro the bioactive extracts of photosynthetic microorganisms (PMs) for their leishmanicidal/leishmanistatic and immunomodulatory potentials. Bioactive extracts from PMs (Arthrospira platensis and Dunaliella tertiolecta) were obtained by sonication. Reference drugs, miltefosine (MTF) and N-methylglucamine antimoniate (SbV), were also evaluated. The selectivity index (SI) of treatments was determined by assays of inhibitory concentration (IC50) in Leishmania infantum cells and cytotoxic concentrations (CC50) in human peripheral blood mononuclear cells by the MTT method. The immune response was evaluated in healthy human cells by the production of cytokines and nitric oxide (NO) and the gene expression of Tbx21, GATA3, RORc, and FOXP3, using four concentrations (CC50, ½ CC50, » CC50, and IC50) for in-vitro stimulation. Based on the data obtained, we observed that the extracts of D. tertiolecta (SI = 4.7) and A. platensis (SI = 3.8) presented better results when compared to SbV (SI = 2.1). When analyzing the immune response results, we identified that the extracts of PMs stimulated the production of cytokines of the Th1 profile more than the reference drugs. The extracts also demonstrated the ability to stimulate NO synthesis. Regarding gene expression, in all concentrations of A. platensis extracts, we found a balance between the Th1/Th2 profile, with the average expression of the Tbx21 gene more than the GATA3 in the highest concentration (CC50). Regarding the extract of D. tertiolecta, we can observe that, in the lowest concentrations, a balance between all the genes was present, with the average expression of the GATA3 gene being lower than the others. The best result was found in the ½ CC50 concentration, stimulating a balanced positive expression between the Th1×Th17×Treg profiles, with a negative expression of GATA3. Thus, PM extracts showed promising results, presenting low toxicity, leishmanicidal/leishmanistatic activity, and induction of the immune response, which could be potential therapeutic candidates for VL.


Assuntos
Antiprotozoários , Leishmaniose Visceral , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Citocinas/uso terapêutico , Humanos , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos BALB C
3.
Appl Microbiol Biotechnol ; 106(2): 497-504, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34985569

RESUMO

Wounds are a public health problem due to long periods required to repair damaged skin, risk of infection, and amputations. Thus, there is a need to obtain new therapeutic agents with less side effects, more effective oxygen delivery, and increased epithelial cell migration. Photosynthetic microorganisms, such as microalgae and cyanobacteria, may be used as a source of biomolecules for the treatment of different injuries. The aim of this review article focuses on healing potential using phytoconstituents from photosynthetic microorganisms. Cyanophyte Spirulina and Chlorophyte Chlorella are more promising due to steroids, triterpenes, carbohydrates, phenols, and proteins such as lectins and phycocyanin. However, there are few reports about identification and specific function of these molecules on the skin. In other microalgae and cyanobacteria genus, high contents of pigments such as ß-carotene, chlorophyll a, allophycocyanin, and hydroxypheophytin were detected, but their effects on phases of wound healing is absent yet. The development of new topical drugs from photosynthetic microorganisms could be a potential alternative to maximize healing. KEY POINTS: • Conventional treatment to skin injuries has limitations. • Proteins, terpenes, and phenols increase collagen deposition and re-epithelialization. • Microalgae and cyanobacteria may be used as a source of biomolecules to wound healing.


Assuntos
Chlorella , Microalgas , Clorofila A , Colágeno , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA